1-6-2 خاصیت سوپرالاستیکی………………………………………………………………………….23
2-6-2 اثر حافظه داری…………………………………………………………………………………..24
3-6-2 بررسی رفتار سوپر الاستیسیته آلیاژ NiTi55…………………………………………..30
4-6-2 اثر دمای پیرسازی بر تنش تسلیم…………………………………………………………….36
5-6-2 اثر اندازه رسوبات بر رفتار تنش-کرنش………………………………………………….37
6-6-2 سختی در آلیاژ های NiTi غنی از نیکل………………………………………………….39
1-6-6-2 سختی در آلیاژ های NiTi غنی از نیکل………………………………….39 2-6-6-2 اثر عملیات حرارتی برروی سختی………………………………………….39
فصل سوم روش انجام آزمایش………………………………………………………………………………………………….42
1-3 ریخته گری………………………………………………………………………………………………………….43
2-3 عملیات همگن سازی و محلول سازی…………………………………………………………………….46
3-3 تست DSC ……………………………………………………………………………………………………….47
4-3 نورد……………………………………………………………………………………………………………………48
5-3 نمونه سازی…………………………………………………………………………………………………………49
6-3 عملیات حرارتی……………………………………………………………………………………………………49
7-3 بررسی ریزساختاری……………………………………………………………………………………………..52
8-3 تست کشش و سختی……………………………………………………………………………………………52
فصل چهارم نتایج و بحث…………………………………………………………………………………………………………54
1-4 همگن سازی و بررسی ریزساختاری……………………………………………………………………….55
1-1-4 اثر محیط سرد کنندگی بر رفتار استحاله ای………………………………………………66
2-4 محلول سازی……………………………………………………………………………………………………….68
3-4 سختی نمونه های همگن شده و عملیات محلولی شده………………………………………………70
4-4 عملیات حرارتی پیرسازی………………………………………………………………………………………73
5-4 سختی……………………………………………………………………………………………………………….105
5- نتیجه گیری و پیشنهادات…………………………………………………………………………………………………..108
پیوست1: لیست مقالات ارائه شده……………………………………………………………………………………………111
مراجع و مآخذ…………………………………………………………………………………………………………………….. 112
چکیده انگلیسی…………………………………………………………………………………………………………………… 115
فهرست شکل ها
شکل1-2 دیاگرام دیاگرام فازی آلیاژ دوتایی NiTi ………………………………………………………………………9
شکل2-2 دیاگرام TTT آلیاژ NiTi52 …………………………………………………………………………………….11
شکل3-2 تصویر الکترونی رسوبات Ni4Ti3 در آلیاژ Ti-51Ni پیرشده در k773 برای ks540………12
شکل4-2 توزیع همگن رسوبات Ni4Ti3 (براساس تعداد ذرات بر واحد حجم) بعد از 1 ساعت پیرسازی همراه با تنش در oC500 و MPa8. نواحی مرز دانه و داخل دانه توسط مونتاژ تصویر TEM نمایش داده شده اند……………………………………………………………………………………………………………….. 14
شکل5-2 شکل گیری واریانت های کریستالوگرافی Ni4Ti3 نزدیک و دور از مرز دانه………………….14
شکل6-2 پایداری فاز B2،R و B19’ در آلیاژ دوتایی NiTi غنی از نیکل. وجود موانع (رسوبات، نابجایی ها) شکل گیری B19’ را ازنظر انرژی مشکل می کند در حالی که بر شکل گیری فاز R تاثیری ندارد………………………………………………………………………………………………………………………………………17
شکل7-2 منحنی شماتیک DSC که دو پیک گرمازا در هنگام سرد کردن و یک پیک در هنگام گرم کردن از خود نشان می دهد…………………………………………………………………………………………………….. 18
شکل8-2 تغییر اجزای منحنی DSC از دو مرحله در زمان کوتاه پیرسازی به سه مرحله در زمان های متوسط و سپس برگشت به دو مرحله در زمان های خیلی طولانی پیرسازی…………………………………….19
شکل9-2 نمایش شماتیکی از تئوری های استحاله چند مرحله ای:a) تئوری ریزساختاری که در آن مرز دانه های فرعی باعث ایجاد مانع بر سر راه رشد B19’ می شود[28و27]. B) استحاله مارتنزیتی چند مرحله ای به دلیل میدان های تنشی پیوسته در اطراف رسوبات. حتی اگر تنش قوی نباشد، تغییر در مقدار نیکل می تواند دلیل این پدیده باشد…………………………………………………………………………………………. 21
شکل10-2a)ریزساختار TEM آلیاژ NiTi غنی از نیکل پلی کریستال با رسوبات نا همگن b) منحنی DSC مربوطه که سه پیک را درهنگام سرد کردن نشان می دهد …………………………………………………..22
شکل 11-2 رسوب ترجیحی فاز Ni4Ti3 در مرز دانه و نزدیک Ti4Ni2O در داخل دانه بعد از پیرسازی در a) 1 ساعت و b) 10 ساعت…………………………………………………………………………………. 23
شکل12-2 نمایش شماتیک استحاله حافظه داری………………………………………………………………………. 24
شکل13-2 مدل ساده شده استحاله مارتنزیتی………………………………………………………………………………25
شکل14-2 دیاگرام سه بعدی تنش-کرنش-دما برای نایتینول…………………………………………………………26
شکل15-2 منحنی تنش کرنش نمونه NiTi51 آنیل محلولی شده………………………………………………….27
شکل16-2 منحنی های تنش کرنش نمونه های پیرسخت شده در زمان های a)10،b)20،c)30،d)60 و e)120 دقیقه…………………………………………………………………………………………………………………………. 29
شکل17-2a)تاثیر زمان پیرسختی بر تنش پلاتو بالایی b) تاثیر زمان پیرسختی بر تنش پلاتو پایینی……29
شکل18-2a)تصویراپتیکی نمونه NiTi55 AR. b,c) تصویر TEM رسوب Ni3Ti و d) حضور رسوب Ni3Ti در ساختار AR. به تغییر شکل شدید رسوبات Ni3Ti به دلیل نورد گرم اولیه توجه شود……………………………………………………………………………………………………………………………………….31
شکل19-2 تصویراپتیکی a)نمونه NiTi50 AR. b,) نمونه NiTi50 آنیل محلولی شده (oC1100) و کوئنچ شده در آب، به مارتنزیت دوقلویی توجه شود. c)نمونه NiTi55 محلولی شده (oC1100) و کوئنچ شده در آب d) نمونه NiTi55 محلولی شده (oC1100) و سرد شده در کوره. به رسوب Ni3Ti شکل گرفته در مرز و داخل دانه توجه شود…………………………………………………………………………………32
شکل20-2 منحنی های تنش کرنش کششی نیمه استاتیک برای NiTi55 و NiTi50 برای شرایط عملیات حرارتی AR و ST. منحنی های فشار برای نیز برای NiTi55 ودر شرایط ST رسم شده است. …………………………………………………………………………………………………………………………………….33
شکل21-2 منحنی های تنش کرنش کششی تحت عملیات HT-1 برای نمونه های a) NiTi55 و b) NiTi50………………………………………………………………………………………………………………………………..34
شکل22-2 منحنی های تنش کرنش کششی برای NiTi55 تحت عملیات HT-2,3 در شرایط a)تک مرحله ای و b) دومرحله ای……………………………………………………………………………………………………..35
شکل23-2 a)منحنی تنش کرنش فشاری و کششی برای نمونه NiTi55 عملیات محلولی شده و پیرشده برای h24. اطلاعات کشش به صورت بزرگ شده نشان داده شده است. تصاویر نمونه های NiTi55 که ایتدا عملیات محلولی شده و سپس در زمان h24 و دردماهای b) oC600، c) oC700 و d) oC800 پیرشده اند. در شکل b و c به دلیل وجود رسوبات بسیار بزرگ کل دانه را فراگرفته اند. در شکل d مرز دانه به صورت بلوکی شکل است و رسوبات Ni3Ti سوزنی شکل در داخل دانه تشکیل شده اند و منطقه PFZ در نزدیکی مرزهای دانه دیده می شود……………………………………………………………………..36
شکل24-2 اثر عملیات حرارتی بر تنش تسلیم فاز مادر………………………………………………………………..37
شکل25-2 منحنی تنش کرنش کششی برای نمونه NiTi 50.9 نورد گرم شده، دردمای اتاق. دما برروی شکل مشخص است. خط چین مقدار کرنش قابل بازیابی را در هنگام گرم کردن نشان می دهد…………38
شکل26-2 فرآیند لازم برای رسیدن به سختی و خاصیت سوپرالاستیک برای آلیاژ NiTi55 ……………40
شکل27-2 سختی مارتنز به عنوان تابعی از دمای عملیات حرارتی برای دو حالت a)نورد گرم و b)کشش سیم سرد…………………………………………………………………………………………………………………. 41
شکل1- 3 تصویر بوته مورد استفاده (در حال چیدن مواد اولیه)…………………………………………………….44
شکل2-3 نحوه چیدمان مواد شارژ درون بوته (نیکل در کناره ها و تیتانیوم در وسط بوته)………………..45
شکل3-3 نمایی از شمش پله دار (اصلاح شده) با تغذیه (مشخص شده)………………………………………..45
شکل 4-3 فلوچارت انجام آزمایش های همگن سازی…………………………………………………………………46
شکل5-3 تیغه تهیه شده از شمش نورد شده……………………………………………………………………………….49
شکل6-3 نمونه تست کشش تهیه شده……………………………………………………………………………………….49
شکل7-3 مشخصات نمونه های پیرسازی شده و نام گذاری آنها……………………………………………………50
شکل8-3 سیکل پیرسازی اعمالی بر روی نمونه ها………………………………………………………………………51
شکل9-3 کوره مورد استفاده به منظور انجام عملیات آنیل انحلالی که لوله کوارتزی متصل به گاز آرگون داخل آن قرار می گیرد……………………………………………………………………………………………………………..51
شکل10-3 ابعاد داده شده در استاندارد ASTM E8 برای کشش نمونه های تخت…………………………53
شکل 1-4 ریز ساختار ریختگی آلیاژ………………………………………………………………………………………….56
شکل 2-4 تصویر SEM نمونه ریختگی…………………………………………………………………………………….57
شکل 3-4 آنالیز Map و منطقه ای که آنالیز در آن در نمونه ریختگی انجام شده است. نقاط قرمز رنگ در تصویر توزیع نیکل در ساختار را نشان می دهد…………………………………………………………………….. 58
شکل 4-4 تصویر متالوگرافی نمونه همگن شده در دمای oC1100 و زمانهای الف) 5/0، ب) 1، ج)2 و د)4 ساعت……………………………………………………………………………………………………………………………..59
شکل5-4 تصویر نمونه ای که مدت 4 ساعت همگن شده است(x400)…………………………………………60
شکل6-4 تصاویر مربوط به نمونه های الف) 5/0 و ب) 1 ساعت در بزرگنمایی x100………………….. 61
شکل7-4 تصاویر مربوط به نمونه های الف) 2 و ب) 4 ساعت در بزرگنمایی x400……………………….62
شکل 8-4 تصویر SEM نمونه ای که به مدت 5/0 همگن شده و در کوره سرد شده است با دو بزرگنمایی ……………………………………………………………………………………………………………………………..64
شکل 9-4 آنالیز خطی EDX از رسوب شکل 8-4 ……………………………………………………………………65
شکل 10-4 منحنی های DSC را برای نمونه های همگن شده A تا D ……………………………………….66
شکل 11-4 مراحل انجام عملیات محلولی …………………………………………………………………………………68
شکل 12-4 تصاویر متالوگرافی نمونه های عملیات محلولی: الف)5/0 ساعت، ب) 1 ساعت، ج) 2 ساعت عملیات محلولی…………………………………………………………………………………………………………….69
شکل13-4 نتایج سختی نمونه های همگن شده و سرد شده در هوا ………………………………………………71
شکل14-4 نتایج سختی نمونه های همگن شده و سرد شده در کوره……………………………………………..72
شکل15-4 نتایج سختی نمونه های عملیات محلولی شده…………………………………………………………….72
شکل16-4 مشخصات نمونه های پیرسازی شده و نام گذاری آنها ………………………………………………..75
شکل17-4 ریز ساختار مربوط به نمونه های: الف) As-received ب)A و ج)M در بزرگنماییx100……………. ……………………………………………………………………………………………………….76
شکل18-4 منحنی تنش کرنش مربوط به نمونه های: الف) As-received ب)A و ج)M …………….77
شکل 19-4 تصویر الف)ریزساختاری و ب) SEM و ج) منحنی تنش کرنش نمونه B …………………..78
شکل20-4 دیاگرام TTT آلیاژ NiTi57 …………………………………………………………………………………..80
شکل 21-4 ریز ساختار نمونه K در دو بزرگنمایی الف) x100 و ب) x500…………………………………81
شکل 22-4 ریز ساختار نمونه K در دو بزرگنمایی الف) x200 و ب) x500 ………………………………..82
شکل 23-4 تصویر SEM نمونه K …………………………………………………………………………………………83
شکل 24-4 آنالیز EDX از رسوبات مشخص شده در تصویر SEM شکل 23-4 ………………………..84
شکل 25-4 تصویر متالوگرافی نمونه N(عملیات محلولی +پیر سازی در دمای oC700 و زمان 1ساعت)…………………………………………………………………………………………………………………………………85
شکل 26-4 منحنی تنش کرنش نمونه: الف) K و ب)N ……………………………………………………………..86
شکل 27-4 ریزساختار نمونه عملیات حرارتی شده: الف)L و ب)O…………………………………………….87
شکل 28-4 نمودار تنش کرنش مربوط به نمونه الف) L و ب)O …………………………………………………88
شکل 29-4 تصویر SEM رسوب Ni3Ti2 را در نمونه L ………………………………………………………….89
شکل 30-4 تصویر متالوگرافی نمونهD: الف)x200 و ب)x500 و ج)تصویر SEM …………………….91
شکل 31-4 نمودار تنش کرنش نمونه D …………………………………………………………………………………..92
شکل 32-4 تصویر متالوگرافی نمونهE: الف)x200 و ب)x500 و ج)تصویر SEM ……………………..93
شکل 33-4 نمودار تنش کرنش نمونه E ……………………………………………………………………………………94
شکل 34-4 تصویر متالوگرافی نمونهF: الف)x200 و ب) تصویر SEM ………………………………………95
شکل 35-4 نمودار تنش کرنش نمونه F ……………………………………………………………………………………96
شکل 36-4 تصویر متالوگرافی نمونهH: الف)x200 و ب)x500 و ج)تصویر SEM …………………….97
شکل 37-4 نمودار تنش کرنش نمونه H …………………………………………………………………………………..98
شکل 38-4 تصویر متالوگرافی نمونهI: الف)x200 و ب)x500 و ج)تصویر SEM ………………………99
شکل 39-4 نمودار تنش کرنش نمونه I …………………………………………………………………………………..100
شکل 40-4 تصویر متالوگرافی نمونهJ: الف)x200 و ب)x500 و ج)تصویر SEM …………………….101
شکل 41-4 نمودار تنش کرنش نمونه j……………………………………………………………………………………102
شکل 42-4 مدول یانگ بر حسب دمای پیرسازی………………………………………………………………………104
شکل 43-4 منحنی تغییرات انرژی جذب شده تا شکست برای دو دمای 500 و oC600……………….104
شکل 44-4 تغییرات سختی در دمای ثابت oC600……………………………………………………………………106
شکل45-4 تغییرات سختی در زمان ثابت 1 ساعت و 8 ساعت …………………………………………………..106
فهرست جداول:
جدول1-2 برنامه پیرسازی برای آلیاژهای NiTi55 و NiTi50 ……………………………………………………33
جدول2-2 سختی و وزن از دست رفته در اثر سایش برای درصد مختلف نیکل………………………………39
جدول1-3 مشخصات نیکل و تیتانیوم مورد استفاده……………………………………………………………………..43
جدول2-3 مشخصات سیستم قدرت کوره …………………………………………………………………………………44
جدول3-3 رژیم حرارتی استفاده شده در آنالیز DSC …………………………………………………………………47
جدول4-3 پارامترهای مربوط به نورد شمش از آلیاژ 5/57 درصد وزنی نیکل …………………………………48
جدول5-3 ابعاد استفاده شده برای ساخت نمونه کشش………………………………………………………………..53
جدول 1-4 دماهای استحاله برای نمونه های همگن شده و سرد شده در کوره………………………………..67
جدول2-4 نتایج سختی نمونه های همگن سرد شده در هوا(air) و کوره(Fur.) و نمونه های عملیات محلولی(Wat.) …………………………………………………………………………………………………………………….70
جدول3-4 نتایج خواص مکانیکی استخراج شده از نمودارهای تنش – کرنش……………………………….103
جدول 4-4 نتایج سختی نمونه های عملیات حرارتی شده………………………………………………………….105
فصل اول
مقدمه
1– مقدمه
آلیاژهای حافظهدار دستهای از آلیاژها با قابلیت منحصر به فرد بازیابی مقادیر قابل توجهی از تغییر فرم خود (تا حدود 8%) هستند. در این حالت نمونه میتواند تحت تنشهای وارده در حد مجاز تغییر شکل دهد و مجدداً با حرارت دادن به شکل اولیه خود باز گردد؛ یا پس از برداشتن بار مکانیکی به صورت الاستیک به شکل نخستین خود باز گردد. در حالت اول پدیده حافظهداری و در حالت دوم پدیده سوپر الاستیک و یا شبه الاستیک رخ داده است. وجود خواص حافظهداری و سوپرالاستیک در آلیاژهای با نسبت اتمی مساوی (معمولاً غنیتر از نیکل) از Ni و Ti دیده میشود. اما به علت پایداری فاز بینفلزی NiTi در یک محدوده ترکیبی، آلیاژهای متعددی با ترکیبهای غیر استوکیومتری وجود دارند. مقاومت به سایش بالا، مقاومت به خوردگی مناسب و قابلیت سازگاری با بدن موجودات زنده از دیگر خواص آلیاژهای حافظهدار NiTi است. این آلیاژها همچنین به واسطه قابلیت میرایی بالایی که دارند در کاربردهای مرتبط با جذب ارتعاشات نیز به فراوانی مورد استفاده قرار میگیرند .وجود این خواص مطلوب مهندسی در این ماده، نایتینول را به عنوان آلیاژی مناسب برای کاربردهای پیشرفته معرفی میکند. خاصیت میرایی این آلیاژ اندکی کمتر از ویسکرهایی نظیر اکریلیک و لاستیک است ولی نسبت به مواد مذکور دارای استحکام و مدول الاستیک بالاتری میباشد. آلیاژهای با نسبت اتمی مساوی از نیکل و تیتانیم و معمولاً غنیتر از نیکل به علت امکان کنترل فرایند استحاله با استفاده ازعملیات حرارتی و پیرسازی، برای تولید آلیاژ نایتینول بیشتر مد نظر میباشند. پدیده حافظهداری به علت سهولت انجام استحاله مارتنزیتی و برگشتپذیری آسان آن می باشد. عملیات حرارتی آلیاژهای NiTi اغلب به منظور بهینه کردن خواص مکانیکی اجزا و قطعات ساخته شده از آن و نیز کنترل دماهای استحاله آن انجام میگیرد. انجام این فرآیند تاثیرات بسیاری بر روی ریزساختار این آلیاژها و در نتیجه روی خواص آنها خواهد داشت.
استفاده از آلیاژهای حافظهدار NiTi غنی از Ni همواره مورد توجه بوده است، چرا که با افزودن Ni به آنها امکان کنترل دماهای انتقالی فراهم میآید (با افزودن at. Ni %1/0 دماهای انتقالی حدود K20 کاهش پیدا میکنند). این آلیاژها به دلیل مقدار نیکل بالایی که دارند، سختی و مقاومت به سایش و خوردگی بالایی از خود نشان می دهند. همچنین در این آلیاژها می توان با عملیات حرارتی مناسب به خواص حافظه داری مناسب و استحکام و چقرمگی مورد نظر رسید. انتخاب سیکل عملیات حرارتی به عنوان روش کار آزمایش و همچنین تحلیل روابط حاکم بین کمیت های مکانیکی و ریز ساختاری با استفاده از نتایج بدست آمده از مجموعه مقالات و منابع مرتبط با موضوع آزمایش، از اهداف اصلی این پروژه است. این مقالات به همراه تحلیل و ارتباط بین آنها در فصل دوم آورده شده اند. دو هدف عمده از انجام این آزمایشات دنبال می شود:
- ایجاد ارتباط بین خواص ریز ساختاری و خواص مکانیکی نمونه های عملیات حرارتی شده و چگونگی تاثیر این خواص بر یکدیگر.
- بدست آوردن محدوده دمایی و زمانی بهینه عملیات حرارتی برای رسیدن به خواص مطلوب ریز ساختاری و مکانیکی آلیاژ نیکل تیتانیم غنی از نیکل.
شرح کامل روش تهیه نمونه ها، روش انجام عملیات حرارتی و تجهیزات مورد استفاده و تست های متالوگرافی و مکانیکی در فصل سوم آورده شده است.
فصل دوم
بر منابع
1-2 تاریخچه و کاربرد
حافظه داری[6] پدیده ای منحصر به فرد در برخی از آلیاژ هاست که ماده پس از پذیرش یک تغییر فرم پلاستیک در دمای پایین توسط حرارت دادن به شکل اولیه خود باز می گردد. این خاصیت اولین باردر سال 1951 توسط چنگ و رید[7] در آلیاژهای Au-Cd مشاهده گردید[1]. در سال 1961 بوهلر و وایلی [2] در آزمایشگاه نظامی نیروی دریایی آمریکا این خاصیت را در سری آلیاژهای Ni و Ti ملاحظه کردند و نام آن را در حالت کلی 55 نایتینول[8] نهادند که در آن نیکل از مقادیر53 تا 60 در صد وزنی را می تواند دارا باشد. از آن پس این خاصیت در بعضی فلزات، سرامیک ها و حتی پلیمر ها نیز مشاهده شد. اما مواد حافظه دار فلزی که اکثراً آلیاژهای حافظه دار هستند، خاصیت حافظه داری بیشتری نسبت به مواد دیگر دارند. از مهمترین این آلیاژها می توان به غیر از آلیاژهای Ni-Ti، به آلیاژهای پایه مس مانند Cu-Zn-Al و Cu-Al-Ni نیز اشاره نمود. در میان این دو سیستم آلیاژی، آلیاژ های Ni-Ti دارای خواص مکانیکی و حافظه داری بهتری هستند به گونه ای که تا 8 درصد کرنش پلاستیک را بازیابی می کنند و نسبت به آلیاژهای پایه مس، پایداری حرارتی مطلوب تری را از خود نشان می دهند. این آلیاژ استحکام خستگی و چقرمگی بالایی دارد که بر اساس این خاصیت، این ترکیب کاربردهای فراوانی در صنایع نظامی و پزشکی یافته است[2].
اگرچه امروزه حجم بالایی از کاربردهای آلیاژهای حافظه دار در ارتباط با زمینه های پزشکی است، اما کاربردهای زیادی نیز در بخش های مختلف صنعتی در حجم بالا برای این آلیاژها بوجود آمده است. استفاده از این آلیاژها در صنعت بیشتر در بست ها و مفصل ها (کوپلینگ) و در بخش های نظامی بوده است. قاب عینک از موارد دیگری است که از خاصیت سوپرالاستیسیتی این آلیاژ ها استفاده می کند. آنتن تلفن همراه نیز یکی دیگر از موارد کاربرد سیم های سوپرالاستیک است. تقویت لحیم SnPdAg در مقابل شکست در اثر تنش های حرارتی، یکی دیگر از موارد کاربرد صنعتی پودر NiTi سوپرالاستیک می باشد. در قسمت اتومبیل سازی، تولید کننده های اروپایی اتومبیل، به مدت طولانی از آلیاژهای حافظه دار به عنوان فعال کننده برای انتقال سیال در جعبه دنده استفاده می کردند. امروزه از درپوش NiTiNb برای آب بندی مسیرهای سوخت با فشار بالا در موتورهای انژکتوری دیزلی استفاده می شود. محرک های حافظه دار همچنین در ساخت دریچه یا سوپاپ اطمینان در کاربردهای صنعتی نیز استفاده می شود. کاربرد محرکی جدید شامل یک قطع کننده حرارتی برای محافظت یون های لیتیم باتری در مقابل افزایش غیر قابل کنترل دما، در اثر شارژ زیاد و یا اتصال کوتاه می باشد[3].
[چهارشنبه 1399-10-10] [ 02:16:00 ق.ظ ]
|