فصل سوم: زمینه3-1 مقدمه……………………… 25

 

3-2 زمینه……………………… 26

 

3-2-1 تعاریف پارامتریک……………………….. 26

 

3-2-2 تعاریف کلی………………………. 27

 

3-3 دسته ­بندی اطلاعات زمینه……………………… 28

 

3-4 آگاهی از زمینه……………………… 31

 

3-5 طراحی زمینه……………………… 32

 

3-6 جمع­بندی………………………. 33

 

فصل چهارم: سیستم­های پیشنهاد­دهنده

 

4-1 مقدمه……………………… 35

 

4-2 بررسی عملکرد سیستم­های پیشنهاد­دهنده…………………….. 36

 

4-2-1 روش­های مبتنی بر محتوا…………………….. 38

 

4-2-1-1 مشکلات و محدودیت­­های روش­های مبتنی بر محتوا …………. 41

 

4-2-2 روش­های فیلترسازی مشارکتی………………………. 42

 

4-2-2-1 مشکلات و محدودیت­­های روش­های فیلتر­سازی مشارکتی………. 46

 

4-2-3 روش­های ترکیبی………………………. 48

 

4-3 ارزیابی سیستم­های پیشنهاد­دهنده…………………….. 49

 

4-4 بسط قابلیت­های سیستم­های پیشنهاد­دهنده…………………….. 51

 

4-4-1 شرکت­دادن شناختی جامع از کاربران و اقلام در فرآیند پیشنهاد­دهی……. 51

 

4-4-2 امتیاز­گذاری چند­معیاری………………………. 52

 

4-4-3 پیشنهاد­دهنده ­های غیر­تداخلی………………………. 53

 

4-4-4 انعطاف ­پذیری………………………. 53

 

4-4-5 توسعه شاخص­های ارزیابی………………………. 544-4-6 استفاده از اطلاعات زمینه در پیشنهاد­دهنده­ ها…………………….. 55

 

4-4-7 سایر گزینه ­ها برای بسط و توسعه سیستم­های پیشنهاد­دهنده ……. 55

 

4-5 جمع­بندی………………………. 55

 

فصل پنجم: روش جدید چند­بعدی برای پیشنهاد­دهی آگاه از زمینه

 

5-1 مقدمه………………………57

 

5-2 سیستم­های پیشنهاد­دهنده آگاه­از­زمینه در تجارت سیار……….. 58

 

5-3 مدل­سازی اطلاعات زمینه……………………… 59

 

5-4 روش چند­بعدی در سیستم­های توصیه­ گر سیار آگاه از زمینه……. 61

 

5-5 جمع­بندی………………………. 68

 

فصل ششم: ارزیابی  

 

6-1 مقدمه……………………… 69

 

6-2 روش ارزیابی………………………. 69

 

6-2-1 پیاده­سازی سیستم جمع ­آوری داده…………………….. 70

 

6-3 پیاده­ سازی روش پیشنهاد­دهی………………………. 72

 

6-3-1 پیاده­ سازی روش پیشنهاد­دهی دو­بعدی………………………. 73

 

6-3-2 پیاده­ سازی روش پیشنهاد­دهی چند­بعدی………………………. 78

 

6-4 جمع­بندی………………………. 82

 

فصل هفتم: جمع­بندی و راهکار­های آینده 

 

7-1 مقدمه……………………… 84

 

7-2 راهکار­های آینده ……………………..85

 

منابع و مآخذ………………………. 87

 

چکیده:

 

استفاده از زمینه، به عنوان اطلاعات پویایی که توصیف­گر وضعیت کاربران و اقلام بوده و بر فرایند تصمیم­گیری و انتخاب کاربران تاثیرگذار است، توسط سیستم­های پیشنهاد­دهنده در تجارت سیار، در جهت ارتقاء کیفیت مناسب پیشنهاد­دهی ضروری است. در این تحقیق یک روش جدید چند­بعدی برای پیشنهاد­دهی آگاه از زمینه در تجارت سیار ارائه­ شده است. در این روش اطلاعات کاربران، اقلام، پارامتر های زمینه و ارتباط میان آنها در یک فضای چند­بعدی نمایش ­داده می­شود که به آن مکعب چند­بعدی امتیازات گفته می­شود. در این فضا زمینه­ های مشابه به­ طور جداگانه برای هر کاربر شناسایی می­شوند که این کار با شناسایی الگوهای مصرف متفاوت کاربران در شرایط زمینه­ای مختلف انجام می­شود. با بدست آوردن این اطلاعات، یک فضای جدید دوبعدی ایجاد­شده و پیشنهاد­دهی نهایی با استفاده از یک روش فیلتر­سازی مشارکتی در این فضا انجام می­گیرد. ارزیابی روش از طریق پیاده ­سازی آن در یک سیستم پیشنهاد­دهی محصولات غذایی رستوران­ها شامل پارامتر­های زمینه­ای روز، زمان، آب و هوا و همراه علاوه بر پارامتر­های کاربر و اقلام و مقایسه آن با روش سنتی پیشنهاد­دهی و بدون در­نظر­­گرفتن اطلاعات زمینه انجام گرفته ­است. برای پیاده­سازی روش فیلتر­سازی مشارکتی از شبکه­ های خود­سازمانده استفاده­شده­است. شبکه­ های خود­سازمانده، نوعی از شبکه های عصبی بدون ناظر هستند. مقایسه و ارزیابی نتایج با استفاده از محاسبه شاخص F1 که یکی از شاخص­های استاندارد و پر استفاده برای ارزیابی پیشنهاد­دهنده­ ها است، انجام گرفته ­است. بر اساس این نتایج، روش پیشنهاد­دهی چند­بعدی در حدود شانزده درصد بهبود نسبت به روش سنتی پیشنهاد­دهی را نمایش می­دهد که همین مساله کارایی روش را از نظر کیفیت پیشنهاد­دهی تایید می­کند.

 

فصل اول: مقدمه

 

1-1- مقدمه

 

سیستم­های پیشنهاد­دهنده در تجارت سیار از جمله موضوعات پر­اهمیت سال­های اخیر بوده­اند که با ظهور تکنولوژی­های بی­سیم و تسهیل حرکت تجارت الکترونیکی از محیط­های سیمی به سوی بی­سیم­ مورد توجه قرار­گرفته­اند. تجارت سیار به­معنای انجام فعالیت­های تجارت­الکترونیک از طریق محیط­های بی­سیم، به­طورخاص اینترنت بی­سیم، و وسایل دستی سیار می­باشد که با­ پیدایش تکنولوژی بی­سیم در عرصه اینترنت و استفاده روزافزون از وسایل سیار توجه به آن رو به افزایش است[1,2]. به کاربرد­های تجارت سیار دو خصوصیت ویژه تحرک[1] و دسترسی وسیع[2] نسبت داده­شده­است[1,3] که اولین خصوصیت بر امکان از بین رفتن محدودیت­های مکانی و دومین خصوصیت بر امکان از بین رفتن محدودیت­های زمانی در استفاده کاربران از خدمات این نوع کاربرد­ها تاکید دارد[1,3,4,5]. این­که کاربران برای انجام فعالیت هایی چون بانکداری الکترونیکی یا خرید الکترونیکی محصولات، قادر به جایگزینی وسایلی چون تلفن­های سیار و ­همراه­های شخصی دیجیتال (پی.دی.اِی)[3] به­جای کامپیوتر­های شخصی باشند، تسهیلات زیادی را برای آنها و فرصت­های جدیدی را نیز برای کسب وکار­ها فراهم­­­خواهد­کرد و لزوم توجه به این عرصه را برای محققان نمایان می­سازد[1,3].

 

اما پیاده­سازی سیستم­های پیشنهاد­دهنده در محیط­های سیار بدون در­نظر­گرفتن پارامتر­های تاثیر­گذار در این محیط چندان مناسب­نخواهد­بود. مجموعه این پارامتر­ها، اطلاعات زمینه را تشکیل می­دهند [6].

 

عملکرد سیستم­های پیشنهاد­دهنده معرفی منابع مورد نیاز کاربران به آنهاست. این منابع می­توانند مواردی مانند اطلاعات خاص مورد نیاز کاربر و یا کالاها­یی مانند کتاب یا فیلم مورد علاقه یک کاربر را از میان انبوه کالاهایی که کاربر با اطلاعات آن­ها روبروست، در­بر­گیرند[7,8,9]. درسیستم­های پیشنهاد­دهنده، سه مجموعه داده اصلی یعنی مجموعه کاربران ©، مجموعه اقلام قابل توصیه(S) (مانند کتاب، فیلم، موسیقی و غیره) و مجموعه داده­هایی که رابطه میان دو مجموعه قبلی را تعریف می­کنند، وجود­دارند. مجموعهS می­تواند شامل صد­ها، هزار­ها و حتی میلیون­ها کالا در کاربرد­های مختلف بوده و به­طور مشابه مجموعه C نیز می­تواند چنین وضعیتی را داشته باشد. ارتباط میان دو مجموعهC و S مبتنی بر ساختار امتیاز­گذاری است که میزان مفید بودن یا مورد علاقه بودن کالا را برای کاربر مشخص می کند. این ارتباط با تابعی تحت­ عنوان تابع سودمندی، u، به صورت رابطه زیر تعریف می­شود.

 

که در آن Ratings، مجموعه مرتبی مانند اعداد صحیح غیر­منفی یا مجموعه اعداد حقیقی در بازه­ای معین می­باشد.

پایان نامه

 

 

در سیستم­های پیشنهاد­دهنده مقادیر u معمولاً فقط بر روی زیر مجموعه­ای از دامنه C×S تعریف­شده­است و نه بر تمام آن و قسمت های نامشخص این دامنه را باید با ­استفاده از داده­های موجود به­صورت تخمینی مشخص نمود. هدف نهایی سیستم­های توصیه­کننده با ارائه پیشنهاد اقلام با بالاترین امتیازات تخمینی به کاربران محقق می­شود به­طوریکه برای هر کاربر ، اقلام با حداکثر میزان سودمندی انتخاب و معرفی می­گردد[7].

 

تا به امروز روش­های پیشنهاد­دهی زیادی ارائه شده­است که این روش­ها و متدولوژی­ها در دسته­بندی­های زیر قرار می­گیرند[7,9,10]:

 

– مبتنی بر محتوا[1] : در این گروه از روش­ها، عمل پیشنهاد­دهی با استفاده از یافتن اقلامی انجام می­گیرد که بیشترین تشابه را با اقلامی داشته باشند که در­گذشته مورد­علاقه کاربر بوده­اند. به عبارت دیگر u(c,s)، سودمندی کالای s برای کاربر c، بر اساس کلیه مقادیر موجود u(c,si) هایی که si مشابه به s بوده و si جزء کالاهای مورد علاقه کاربر هستند،­ برآورد می­شود.

 

– فیلترسازی مشارکتی : در این گروه از روش­ها، عمل پیشنهاد­دهی با استفاده از یافتن اقلامی انجام می­گیرد که مورد علاقه کاربران با سلایق مشابه کاربر بوده­اند. کاربران با سلایق مشابه یعنی کاربرانی که اقلام یکسانی را امتیاز­دهی مشابه کرده باشند. به­عبارت دیگر u (c, s) بر اساس مقادیر موجودu(c,s) بدست می­آید که cj کاربران مشابه با c می­باشند.

 

– مدل ترکیبی[2]: روش­هایی که دو روش مبتنی­بر­محتوا و فیلتر­سازی مشارکتی را ترکیب می­کنند و به این صورت از مزایای هر دو روش در جهت شناسایی و معرفی کالاها بهره می­گیرند.

 

در نگاهی دیگر روش­های پیشنهاد­دهی، اعم از مبتنی بر محتوا و فیلتر­سازی مشارکتی به دو دسته روش­های مبتنی بر حافظه[3]و مبتنی بر مدل[4] تقسیم می­شوند. در­مقایسه با الگوریتم­های مبتنی بر حافظه، الگوریتم­های مبتنی بر مدل، با استفاده از روش­های یادگیری ماشین[5] مدلی را با استفاده از مجموعه امتیازات موجود ایجاد کرده و از آن به­منظور پیشگویی امتیازات استفاده می­کنند[7,10,11].

 

1-2 موضوع تحقیق

 

موضوع این تحقیق، ارائه روشی برای پیشنهاد­دهی آگاه از زمینه در تجارت سیار می­باشد. با­ پیدایش تکنولوژی بی­سیم در عرصه اینترنت و استفاده روزافزون از وسایل سیار، پیاده­سازی سیستم­های پیشنهاد­دهنده در محیط­های سیار با توجه به محدودیت­های خاص آن چون هزینه­بر بودن زمان اتصال و تبادل داده، محدودیت پهنای باند، کیفیت پایین اتصال و محدودیت­های ورودی و خروجی وسایل سیار، نیاز به بررسی بیشتر را در جهت ارائه اطلاعات مرتبط­تر و شخصی­سازی­شده­تر می­طلبد. بررسی تاثیر اطلاعات زمینه به­عنوان شرایط و محیط دربرگیرنده کاربر و به­عنوان اطلاعاتی که بر فرایند تصمیم­گیری وی تاثیر­گذارند، برخروجی این­گونه کاربرد­ها، مساله­ای است که در این تحقیق مورد بررسی قرار گرفته­است.

 

1-3 پیشینه تحقیق

 

ظهور تکنولوژی­های بی­سیم و استفاده رو به­افزایش وسایل سیار، فرصت­های زیادی را پیش روی کاربرد­های تجارت الکترونیک قرار­داده­است. با توجه به محدودیت­های خاص محیط­های سیار، ارائه اطلاعات به­صورت شخصی­سازی­شده­تر و سفارشی­شده­تر یکی از اهداف مهم کاربرد­های تجارت سیار است. در­نظرگرفتن اطلاعات زمینه به­عنوان شرایط و محیط دربرگیرنده کاربر و به­عنوان اطلاعاتی که بر فرایند تصمیم­گیری وی تاثیر­گذارند، در ارائه خروجی این­گونه کاربرد­ها از جمله مواردی است که می­توان از آن در جهت ارائه اطلاعات مرتبط­تر به کاربران بهره گرفت.

 

سیستم­های پیشنهاد­دهنده همواره از جمله موضوعات پر اهمیت در حوزه تجارت الکترونیک بوده­است. سیستم­های پیشنهاد­دهنده سیار آگاه از زمینه در آغاز راه هستند. دسته مهمی از سیستم­های آگاه از زمینه را سیستم­های آگاه از مکان تشکیل می­دهند. یانگ، چنگ، و دایا[12]، یک سیستم پیشنهاد­دهنده آگاه از مکان برای محیط­های سیار ارائه­داده­اند که هدف آن توصیه وب­سایت فروشندگان با در نظر­گرفتن علایق و پیش­فرض­های مشتری و همچنین فاصله مکانی وی با مکان فیزیکی مشخص­شده در وب­سایت­ها می­باشد. در روش مزبور، دو فاکتور فوق به­طور جداگانه محاسبه­ شده و سپس بر اساس ترکیبی از آنها به پیشنهاد وب­سایت­ها پرداخته می­شود. یکی دیگر از این نوع سیستم­ها پروکسیمو[13] است که یک سیستم پیشنهاد­دهنده آگاه از مکان برای محیط­های داخلی چون موزه­ها و گالری­ها است. این سیستم بر اساس علایق و پیش­فرض­های کاربر به پیشنهاد اقلام پرداخته و مکان اقلام را بر روی نقشه­ای بر روی وسیله همراه کاربر نمایش می­دهد.

 

استفاده از سایر اطلاعات زمینه­ای علاوه­بر مکان نیز مورد توجه توسعه­دهندگان این نوع سیستم­ها قرار­گرفته­است. پخش موسیقی یکی از حوزه­های کاربردی پر­مصرف در میان کاربران سیار می­باشد و به همین دلیل استفاده از پیشنهاد­دهنده­های آگاه از زمینه در این حوزه مورد توجه قرار­گرفته است. از آنجایی که تاثیر موسیقی بر روح و جسم انسان ثابت شده­است، انتخاب موسیقی با توجه به شرایط می­تواند وضعیت دوست­داشتنی­تری را فراهم­کند و افراد را در انجام فعالیت­هایشان یاری رساند. مثلاً موسیقی می­تواند کارایی فرد را در حال انجام تمرینات فیزیکی بهبود بخشد، اضطراب را کاهش دهد و میزان یادگیری را بهبود بخشد. [14] یکی از تحقیقاتی است که در این حوزه ارائه­شده­است. در این تحقیق علاوه­بر بررسی روش­های فیلتر­سازی مبتنی­بر زمینه و مرور پیشنهاد­دهنده­های سیار آگاه از زمینه موسیقی، پیشنهاد­دهنده سیار آگاه از زمینه AndroMedia ارائه شده­است. پیشنهادات با توجه به زمینه جاری کاربر که با استفاده از حسگر­های بلوتوث در سمت برنامه مشتری بدست می­آیند و همچنین سلایق کاربر تهیه می­شوند. همچنین در مرجع [15] نیز پیشنهاد­دهی آگاه از زمینه موسیقی در محیط­های سیار مورد بررسی قرار­گرفته­است. در تحقیق پارک، یو و چو[16] نیز یک سیستم آگاه از زمینه موسیقی با استفاده از شبکه­های بیزین فازی و تئوری سودمندی ارائه­شده­است. فرایند پیشنهاد­دهی تحلیل شده و سودمندی آن مورد ارزیابی قرار­گرفته­است.

 

گردشگری نیز یکی از حوزه­های جذاب برای پیاده­سازی پیشنهاد­دهنده­های سیار آگاه از زمینه می­باشد. امروزه گردشگران انتظار دارند که دسترسی شخصی به اطلاعات گردشگری در هر زمان، هر مکان و در هر شرایطی را داشته­باشند. راهنما­های گردشگری سیار، چنین اطلاعاتی را در اختیار کاربران قرار می­دهند. در مرجع [17] خلاصه­ای از کار­های انجام­شده در زمینه راهنماهای گردشگری سیار تحت وب انجام گرفته­است. همچنین در مرجع[18]  تاثیر آگاهی از زمینه در سیستم­های اطلاعاتی گردشگری سیار مورد بررسی قرار گرفته­است. در [19] نیز یک کاربرد توریستی سیار با نام COMPASS ارائه­شده­است. در این تحقیق به بررسی ترکیب آگاهی از زمینه با سیستم­های پیشنهاد­دهنده پرداخته شده­است. پارامتر­های زمینه­ای این تحقیق شامل زمان و مکان می­باشند. این سیستم خدمات خود را با نیاز­های کاربر که بر اساس علایق و زمینه جاری وی مشخص می­شود، تطبیق می­دهد.

 

در [20] نیز یک سیستم پیشنهاد­دهنده تصاویر با استفاده از یک روش داده­کاوی که ترکیبی از روش­های مبتنی­بر­محتوا و مبتنی­بر اطلاعات زمینه می­باشد ارائه­شده­است. اطلاعات زمینه استفاده­شده در این تحقیق شامل زمان و مکان هستند. لی، ونگ، جنگ و دای[21]، یک سیستم توصیه­کننده آگاه از زمینه برای کاربرد­های تجارت سیار ارائه­داده­اند. در این تحقیق از مدل چند­بعدی موجود در سیستم­های OLAP برای نمایش فضای توصیه­گری و از روش مبتنی بر کاهش فضا به­منظور کاهش فضای توصیه­گری به فضای دو­بعدی و انجام عملیات توصیه­گری در فضای مزبور استفاده­کرده­اند.

 

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...