شکل 1-1- نمودار تغییرات ضریب رسانش حرارتی نسبت به زمان برای مخلوط آب اکسید مس… 7
شکل 1-2- افزایش انباشتگی نانوذرات با افزایــــش زمان برای مخلوط آب اکسید مس (0.1=φ). الف)20 دقیقه ب)60 دقیـــقه ج) 70 دقیقه.. 7
شکل 1-3- نمودار تغییرات ضریب رسانش حرارتی نسبت به نسبت حجمی ذرات نانو   8
شکل 1-4- نمودار تغییرات ضریب رسانش حرارتی موثر نسبت به نسبت حجمی و اشکال متفاوت نانوذرات برای مخـــــــلوط آب-اکسیدآلومنیم.. 9
شكل 1-5- نمودار تغییرات ضریب رسانش حرارتی موثر نسبت به ضخامت لایه سیال پیرامون نانوذرات.. 11
شكل 1-6- نمودار تغییرات ضریب رسانش حرارتی موثر نسبت به دما برای مخلوط آلومینیوم- آب.. 11
شکل 2-1- نمونه­ای از حجم کنترل (ناحیه سایه­دار) که در آن فرض پیوستگی برقرار است.. 15
شكل 2-2- رژیم­های جریان گاز بر پایه­ی نادسن… 17
شكل 2-3- هندسه­ی مسئله.. 18
شكل 2-4- ساختارهای جریان در رژیم آرام.. 19
شكل 3-1- حجم کنترل نانوسیال برای معادله­ی پیوستگی.. 28
شکل 3-2- حجم کنترل نانوسیال برای معادله­ی بقاء انرژی.. 28
شکل 3-3- نمای کلی عملکرد الگوریتم سیمپل.. 37
شکل 3-4- یک صفحه شطرنجی با توزیع فشار غیر یکنواخت.. 38
شکل 3-5- طرز قرار گرفتن گره­ها برای جریان دو بعدی.. 40
شکل 3-6- سیستم مکان­ها بر اساس شماره گذاری خطوط شبکه و وجوه سلول   41
Ra = و 0.05= φ) 43
Ra = .. 45
شکل 4-3- مقایسه پروفیل دما در برش میانی حفره مربعی(6.2=Pr ، 105- 104=G و 0.05= φ ) 46
شکل 4-4- پروفیل­های سرعت و دما بی­بعد در برش میانی حفره مربعی.. 47
شکل 4-5- مقایسه خطوط جریان بین سیال خالص و نانوسیال آب در نسبت منظری­های مختلف و0.05= φ. .. ……………………………………… … 49
شکل 4-6- مقایسه خطوط همدما بین سیال خالص و نانوسیال آب در0.05= φ و نسبت منظری­های مختلف.. . ………………………………………… 50
شکل 4-7- مقایسه تغییرات سرعت ماکزیمم افقی در برش میانی حفره بین سیالات خالص و نانوسیالات آب و اتیلن گلیــکول در 0.05= φ نسبت به تغییرات نسبت منظری   51
شکل 4-8- مقایـــــسه تغییرات سرعت ماکزیمم افقی در برش میانی حفره بین نانوسیالات آب و اتیلن گلیــــکول در0.05= φ نسبت به تغییرات نسبت منظری   52
شکل 4-9- مقایسه تغییرات سرعت ماکزیمم عمودی در برش میانی حفره بین  سیالات و نانوسیالات آب و اتیلن گلیـــکول در 0.05= φ نسبت به تغییرات نسبت منظری   53
شكل 4-10- مقایسه تغییرات سرعت ماکزیمم عمودی در برش میانی حفره بین نانوسیالات آب و اتیلن گلیــــکول در0.05= φ نسبت به تغییرات نسبت منظری   53
شکل 4-11- تغییرات ناسلت ماکزیمم برای نانوسیالات آب و اتیلن گلیـکول نسبت به تغییرات نسبت منظری در نسبت حجمی و رایلی­های متفاوت.. 55
شکل 4-12-. تغییرات ناسلت ماکزیمم برای سیال خالص و نانوسیال آب و اتیلن گلیکول نسبت به تغییرات نسبت منظری.. 56
شکل 4-13- تغییرات ناسلت متوسط نانوسیالات آب و اتیلن گلیـــــــکول نسبت به تغییرات نسبت منظری در نسبت حجمی و نسبت منظری­های محتلف… 58
شکل 4-14- تغییرات ناسلت متوسط نانوسیالات آب و اتیلن گلیـــــــکول نسبت به تغییرات نسبت منظری در نسبت حجمی و رایلی­های محتلف.. 59
=Ra  برای نسبت­های حجمی متفاوت.. 61
شکل 4-16- مقایسه­ی تغییرات ناسلت متوسط نانوسیال در 0.1= φ با سیال پایه­ی آب و ذرات نانو مختلف نسبت به تغیـیـــرات نسبت منظری.. 62
شکل 4-17- پروفیل­های سرعت و دما­ی بی­بعد در برش میانی حفره مربعی برای قطرها­ی مختلف.. 63
 

 

 

 

 

 

 

 

 

   فهرست جدول ها
 
عنوان                                                                                                         شماره صفحه

 

 
جدول(4-1)- خواص ترموفیزیکی سیالات و نانوذرات…………… 43
جدول(4-2)- مقایسه­ی نتایج تحقیق حاضر و نتایج مرجع………. 44
 جدول(4-3)- مقادیر ناسلت متوسط نانوسیال با سیال پایه­ی آب .. 64
 جدول(4-4)- مقادیر ناسلت متوسط نانوسیال با سیال پایه­ی اتیلن گلیکول   65
لیست علائم و اختصارات
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

پایان نامه

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ی نوشته‌ها


 
 
 
dth="563">